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Abstract— At present, bridge maintenance management typ-
ically consists of regular visual building inspections. Structural
damage frequently remains undiscovered until it becomes
clearly visible, a situation which makes little economic sense.
However, it is often the case that damage and critical re-
actions to a bridges internal structure occur in inaccessible
and concealed places, and are caused by existing but often
unknown effects on the construction. Existing as well as
newly-constructed bridges should therefore be able to provide
information about their condition and it’s development at an
early stage in addition to the building inspections. To achieve
this, flexible and adaptable modular systems are required in and
on the bridge structures to provide measurement-technology
support, together with differentiated evaluation procedures and
a correspondingly enlarged maintenance management program.
The instrumentation required must consist of capable and
durable sensor technology to register effects on the structures
and the reactions of individual structural elements; on the
other hand smart measurement data processing must also
be in place to ensure the plausibility, fusion, interpolation
and reduction of sensor data streams in situ. This article
summarizes the approaches and prospects of implementing a
high-performance sensor data analysis and monitoring concept
which has been examined in the context of current research with
a focus on practical aspects of monitoring bridge structures.
The discussion in this contribution focuses on model-based
and statistical analysis techniques with regard to areas of
application and input-to-benefit-ratios. The findings of this
research are of general interest and therefore transferable to
other areas of infrastructure maintenance management.

I. INTRODUCTION

With its central position in Europe, the federal trunk
road network in Germany (BFSt) carries the main burden
of traffic in the European internal market and furthermore,
have to withstand with ever-rising volumes of traffic in the
future. The federal trunk road network contains over 39,400
bridges with a total bridge surface area of approx. 30 million
m2 [2]. Maintaining these structures requires an ongoing
process of observation and inspection, a task of considerable
importance for the road construction authorities. Bridges are
awarded a score denoting their condition as the result of
regular, manual (visual) structural inspections in accordance
with DIN 1076, which include damage assessments with
regard to stability, durability and traffic safety [2][3]. The
road construction authorities of the federal countries use
the results of these structural inspections as the basis for
their maintenance planning. The current approach is based
in the first instance on identifying damage and is therefore
responsive; since damage is only discovered within the scope
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Fig. 1. Conception of Smart Bridges: adaptable modular systems for
registration and wholistic evaluation of relevant information on changes in
actions and resistance on bridges.

of the regular inspections at a late stage after it has become
obvious, this leads to high costs for maintenance and repair.

In order to continue providing a reliable road infrastructure
in the long term and under strict budget limitations, it is
necessary to integrate new and innovative approaches into
maintenance management procedures which enable damage
to be detected at an early stage. This is particularly important
in the context of establishing the condition of building
structures, ideally in real time. It is therefore necessary to
design and develop a modular system which can be fitted to
specific, individual structures and which can deliver relevant
information regarding changes in action and resistance on
bridge structures. This system should also include an as-
sessment of the current condition which is appropriate to
the structure and which comprise the condition parameters
comprehensively. It is possible to achieve this by equipping
the instrumentation on the building structures with sensors
which match the requirements of these individual structures.
Sensor data registered in this way can be applied for the
remote monitoring of the BFSt in real time. They as well
can be employed for predicting changes in the condition of
structures by using program-based structural bridge models
and deterioration models. In these models damage related
issues for individual elements and their relevance for the
overall static integrity of the structure are combined and
subsequently assessed (Figure 1). Furthermore, process data
for structures which are capable of adapting to operational
conditions (adaptive structures) can be obtained possibly, e.g.
the load-dependent control of the prestressing of tendons.
This paper is an extended version of [1] containing substan-
tially novel aspects such as statistical approaches and new
simulation results.

II. SENSOR DATA MONITORING AND ANALYSIS SYSTEM

For the above mentioned scope, the generation of reliable
information with the least possible error using a robustly



Fig. 2. Concept for a sensor data monitoring and analysis system.

defined concept for measurement-technological condition
monitoring is of primary importance. A major contributory
factor here is provided by a powerful system of sensory
data monitoring and analysis (cf. Block Data Preprocessing
Figure 1) which is upstream of further data processing and
use.

The essential tasks to be carried out by this system are
(Figure 2):

• Validating the Plausibility of Sensor Data by de-
tecting errors in sensor signals which are caused by
malfunctions, aging, various types of interference in
the way the instrumentation is set up such as line
crosstalk, electromagnetic interference and drift; quality
assessment is applicable.

• Fusing Sensor Data (merging and integration of in-
formation) of similar or different measurement and
registration variables for determining the condition of
structures or structural elements.

• Interpolating Sensor Data as input variables for
program-based damage prediction algorithms, temporal
and spatial interpolation for the generation of plausible
data streams necessary for suppressing sensor signal
errors.

• Deriving higher-value Information (automatically)
on selected condition parameters with the aim of in-
dependently identifying specific technical issues with
predefined measurement-technological and/or structure-
specific significance.

The last three functions enable to achieve a degree of data
reduction in the registered data so that the configuration size
of data transfer channels and power supply components can
be reduced.

A. Methodological Approach

In assembling a reliable body of data on the current
condition of building structures, simple monitoring and
analysis technique which are for example based on the
value range and trend monitoring of measurement parameters
are insufficient for the required technical standard due to
their poor detection performance and the lack of correction
potential for faulty data. Procedures based on a probabilistic
approach which takes account of signal-stochastic and/or

signal-theoretical aspects, as well as approaches used in
artificial intelligence, can lead to a significant increase in
performance in the area of measurement-technological con-
dition monitoring on building structures within the task scope
detailed above. This paper seeks to present the results of
research which was conducted in the form of a feasibility
study which examined real sensor data [4] which shows
promising potential approaches for implementing a powerful
sensor data monitoring and analysis system which would
fulfill possible future operational requirements on bridges.

Fig. 3. Representation of structural and element properties and measure-
ment characteristics.

The following representation serves to describe the in-
vestigation of data on actions (e.g load resistance, freeze-
thaw cycle stresses) and resistance (corrosion resistance, the
current moment of resistance), i.e. the process of registering
the current properties of a structural element and/or the
system condition of the bridge xk with all its parameters
covering action, durability and load-bearing capacity, which
in turn form the basis for further analysis and statements on
the condition of the structure (Figure 3).

III. MODEL-BASED APPROACHES

Model-based analysis technique can be used constructively
for displaying sensor information and condition information,
for increasing plausibility of this information and for data
reduction purposes. In general, an explicit mathematical
model is adopted which describes the physical and chem-
ical characteristics and relationships in the process being
examined: e.g. time-independent material laws, analytical
lifetime models and models which illustrate the load and
deformation behavior of a building structure. The more
precise the modeling of the physical process being described
is, the more precise the result of the condition data being
calculated. To this end, a number of initially unknown and/or
still to be determined physical/chemical parameters must be
set. In an inhomogeneous system such as structural elements,



Fig. 4. Areas of application for model-based and statistical analysis
technique (green: supports perfectly, yellow: moderately applicable).

these parameters are location-dependent. This can lead to a
high degree of complexity and high levels of computation
for models of this kind, especially when sensor data need
to be evaluated and checked locally, i.e. in a sensor node. It
would therefore be worthwhile to identify simplified models
as approximations which are sufficient for the plausibility
check and the sensor fusion of the registered data [5][6][7].
Figure 4 provides a current assessment of the areas of
application suitable for model-based analysis technique in
comparison with the other very simple procedures, on the
basis of knowledge gained in the course of this study.

A. Modeling System and Measurement Behavior

In general, a mathematical model serves to describe a
system or process such as the deformation of a structure
under load. This model is made up of a model structure as
well as model parameters. It displays the relation between
input variables and output variables, e.g. the load as an
input variable and the associated deformation (stress) of a
structural element as an output variable. The physical pa-
rameters, which clearly describe the condition of the physical
process, are identified as system status xk. Depending on the
type of system being described, various physical/chemical
parameters can be used as condition variables; in the case of
mechanical systems these are usually displacements, angles,
velocities and accelerations. The approximate modeling is
described by a system equation [7].

Sensors which work in the same way on the basis of
physical and/or chemical laws can also be displayed descrip-
tively as a physical system. Here, measurement errors and
particular sensor characteristics (e.g. nonlinear measurement
function, the influence of temperature) can be included in a
measurement equation. ykrepresents the sensor data as they
exist directly at the output of a sensor.

Figure 5 illustrates the procedure using a multi-ring
electrode with an integrated temperature sensor (PT 1000),
which represents the parameters temperature T and concrete
moisture content fB in a concrete structural element by
changing the electrical resistance (RT and RF ).

Figure 6 provides a general outline of how a system under
observation (physical processes in a structural element) as
well as the measurement procedure itself can be modeled
together. The system equation describes approximately (de-
terministically) the behavior of the element in relation to a
set of specified physical parameters, whilst the measurement
equation describes the non-ideal measurement process. The

Fig. 5. Definition of system status and sensor data using a multi-ring
electrode [12]

data flow in Figure 6 can therefore be seen as a simulation
of the actual condition of the element in reality and during
the measurement procedure (time-discrete implementation
i.e. for interval-based measurements).

Fig. 6. Modeling of structure element and measurement behavior.

By initiating the inverse function in the measurement
equation and the measurements yk (Figure 7) which have
been registered on site and which have now been fed into
this modified measurement equation, it is possible to reduce
measurement errors – thanks to the physical system model
and by accounting for the characteristics of the measurement
procedure. In addition, this method enables future measure-
ments to be predicted for any given condition parameter
of a structural element (model-based state estimator). Both
imprecisions that occur during the modeling process and
are naturally present in the measurements are considered by
means of a probabilistic approach. By conducting a direct
comparison between the registered and the predicted mea-
surements, it is possible to carry out an efficient plausibility
check on the measurement data. Furthermore, this also allows
for fusion, interpolation and data reduction.

Fig. 7. Realization of a model-based state estimator using the inverse
function in the measurement equation.

Using a model-based state estimator [8] [9] [10], it is
possible for monitoring purposes, to assess the degree of
moisture and its associated variance in a concrete structural
element from data registered using two separate sensors
(moisture as well as temperature to correct the moisture data)



Fig. 8. Data fusion – model-based state estimator – estimating levels of
moisture and its variance.

(Figure 8, measurement interval 15 mins, input data as in
Figure 5). Because of providing the result by combining in-
put data RT and RF (two-dimensional measurement dataset),
data fusion occur.

The modeling of structural element behavior permits a
number of approaches depending on the required capability
levels and effort required for implementation. Comparable
approaches such as those used in the modeling of structural
element behavior can also be used analogously for the mod-
eling of measurement behavior [4]. Figures 11 and 25 show
approaches for parameters which are typically registered in
situ from the structure itself.

1) Precise Modeling of the Physical Process at Hand:
For the purposes of modeling, bridge elements constitute
an inhomogeneous system in which the physical/chemical
parameters in the elements are location-dependent and which
therefore have to be adopted as being parametrically dis-
tributed. To achieve precise modeling, it is therefore neces-
sary to arrive at a description of physical parameter using
a system of stochastic, partial differential equations (PDE).
Precise modeling is therefore highly complex. Often, this
complexity is inappropriate in relation to the attainable
improvements of accuracy and robustness for the data for
sensor fusion and validation of plausibility of the data [11].

2) General Physical Modeling: When carrying out a data
plausibility check, it is often most expedient to limit the
process to universally valid general laws. Any inaccuracies
arising as a result can simply be incorporated into the
modeling process (process noise).

In many cases, it can be assumed e.g. that the temperature
in an element (and hence in the sensor) cannot simply change
suddenly, but requires a certain period of time in order
to harmonize the thermal masses involved in the process.
This inertia in many physical processes can be described
by using a so-called PV model (P stands for physical
parameter and V for its time derivation, velocity) or more
generally using a PVA model (A stands for the second time
derivation, acceleration). For example, simple laws of motion
concerning involved masses of the elements and simple me-

teorological effects concerning the ambient temperature can
serve as the basis for addressing acceleration (cf. Figure 11).
Adjusting the algorithms to the building structure can only
be done generally, and they only become more precise by
relearning the parameters automatically while in operation
[5][6]. Clearly illustrated the general physical modeling is
the tracking of future condition changes in the parameters
registered in the structural element based on general laws.

Fig. 9. Multiple models – different system equations running in parallel
and subsequent ongoing weighting of the individual system models.

Fig. 10. Separation of signal components - temperature trend and day/night-
fluctuations.

3) Approximations using Multiple Model Approaches:
In many cases, it is not possible to describe the dynamic
behavior of an element satisfactorily by using a single system
model. For example, dynamic behavior can be entirely differ-
ent during sharp rises in temperature (sunshine and shadow
constellation) than during sharp falls in temperature (e.g.
during a sudden cold front). These behavioral differences can
be considered for using a finite number of potential models
which describe different aspects of the system behavior
(Figure 9). These models can differentiate e.g. between
noise levels, the system structure or the dimensionality of
the condition parameters. A measurement sequence which
switches between slow and fast changes at different points in
time can be described using two system models. Depending
on the situation, the weighting of the individual models
changes and the algorithm therefore adjusts adaptively to the
measurement sequence. In addition, higher-value information
can be derived from the weighting of the models [13].

4) Separation of Signal Components: By selecting the
appropriate probabilistic model, additional information can
be extracted from the registered data. It is therefore possible
to determine not directly measurable parameters such as tem-



Fig. 11. Implementation possibilities for typical parameters registered in situ at a building structure.

perature trend rates. The measurement data registered during
the measurement process often arises due to various diverse
physical effects. Therefore these signals can be separated into
different parts, such as their separation into slower and faster
changes (e.g. temperature trend and day/night fluctuations).
The example Figure 10 (PT 1000 temperature sensor, mea-
surement interval 15 mins, input data as in Figure 5) shows
temperature profiles for monitoring purposes, together with
their associated variations.

IV. STATISTICAL APPROACHES

Statistical methods of analysis (and in particular machine
learning techniques) are in particular suitable for increasing
plausibility and extracting higher value information, i.e. the
automated recognition of technical situations (see Figure 4).
Unlike model-based methods of analysis, the special property
of machine learning techniques lies in their independent
learning ability, i.e. based on a set of training data, they
can learn specific tasks autonomous without being explicitly
programmed to do so (no physical model is required). The
efficiency and potential to fulfill the set tasks depend on the
structure and arrangement of the techniques. The task with
techniques of this kind consists of finding an information
processing structure for specific tasks and then optimizing
it. Once this has been defined for a certain class of problem
or type of sensor, the techniques can implement this struc-
ture automatically and learn its parameter assignment and
therefore its behavior independently [14][15].

A. Machine Learning Algorithms

The following machine learning algorithms in particular
come into question when equipping sensor data monitoring
and analysis systems:

• Principal Component Analysis (PCA): this is a tech-
nique from multivariate statistics. Based on the linear
combination learned by means of training data, it is
possible, for example, to calculate an expected mea-
surement and therefore its variation from the actual
measurement [16].

• Artificial neural networks (ANN) are mathematical
descriptions that attempt to come close to reproducing
the structure and information architecture of the nerve
system of animals or humans. The special property of
artificial neural networks is their independent learning
ability, i.e. based on a set of training data, they can learn
certain tasks autonomously without being explicitly
programmed to do so [14] [19].

• Self-Organizing Maps (SOM) are a special type of
artificial neural network for the unsupervised learning
of features related to differentiated data groups. The
features learned may be used to check the plausibility of
the measurement and entry data, i.e. to detect anomalies
[17].

• Generative Topographic Mapping (GTM) can be seen
as a probabilistic extension of SOMs; uncertainties in
the measurement and entry data and the learned model
can be systematically taken into consideration [18].

Without a further presentation of each of these techniques,
a brief assessment of their suitability is depicted by way
of the results of the study (cf. Figure 14). The Artificial
Neural Networks (ANN) represent the most efficient machine
learning technique for the range of tasks specified, and will
therefore be looked at in greater detail below.



Fig. 12. Unsupervised learning – plausibility check of measurement and test data using machine learning algorithms.

Fig. 13. Supervised learning – extraction of higher value information using
machine learning algorithms.

Fig. 14. Assessment of the suitability of machine learning algorithms for
monitoring bridges (green: supports perfectly, yellow: moderately applica-
ble).

B. Unsupervised Learning Algorithms for Plausibility
Checks

Machine learning algorithms in particular from the area
of unsupervised learning can be used to check the plausi-
bility of measurement and registration data. These groups of
machine learning algorithms work without prior knowledge
of target values, i.e. of belonging to certain classes (labels).
The class to which the signal events in the training examples
belong is therefore not known in advance. The algorithms
independently try to detect patterns in the entry data that
vary from an unstructured scattering (noise).

During the learning phase a kind of imprint or model
description of the normal behavior is generated on the basis
of a certain volume of training data. Data which differ from
each other due to characteristic patterns are arranged in
several classes or categories using feature extraction and

clustering techniques. This describes the general structure
of the data. In the operation phase the measurement data
described as having normal behavior are then checked for
any existing deviations and implausibility. If there are dis-
crepancies between the learned normal behavior and the
measured signal form, these are detected (see Figure 12).
A data prediction is possible.

Fig. 15. Supervised learning – learning and operation phase.

C. Supervised Learning Algorithms for Extracting higher
Value Information

Supervised learning describes machine learning algorithms
that operate with known target values (classes). Inputs and
outputs of the algorithm are therefore known, as is the
classes that the training examples belong to. For a desired
plausibility check of measurement data, it is necessary to
specify, for example, whether the training data used are
plausible or implausible data (resulting in two classes or
target values <Data plausible> and <Data implausible>).
Such techniques enable relevant features and information to
be filtered from extensive data material without explicit prior
knowledge of the model.

In the first step, relevant features are extracted using the
unsupervised learning algorithms described above. These
features are then linked to target values in a learning phase
(Figure 15). The target values depend on which information
is to be extracted from the data in the subsequent operation
phase (Figure 13).

In the second step of the learning phase, a classifier
is used to learn the relationship, i.e. the dependency, be-
tween the extracted features and the defined target values.
Classification processes are methods and criteria to classify
objects, situations or feature spaces into classes. Classifiers



are therefore always used to suit the particular application.
For example, the signal form (various types of signal forms,
e.g. disproportionate rise, sinus oscillation, jumps, transient
responses while warming up etc.), plausibility (plausible or
implausible measurement and registration data), error types
(various types of damage to the structure or sensor system,
mains frequency interference, erratic changes to the width
of cracks etc.), traffic load (information about the vehicles
crossing, e.g. axle number, vehicle models etc.) are detected.

V. EXPERIMENTAL RESULTS

A. Model-based Approach

Model-based state estimators can be used for the extrac-
tion and filtering of relevant condition variables from the
measurement data. This is illustrated using the multi-ring
electrode (cf. Figure 5) as an example. From the respective
changes in resistance (RT and RF ), it is possible to deter-
mine the parameters temperature T and concrete moisture
fB in the structural element.

Fig. 16. Raw data from the multi-ring electrode for temperature and
moisture.

Fig. 17. Data fusion – temperature, temperature trend and day/night-
fluctuations.

Fig. 18. Data fusion – moisture, moisture trend and day/night-fluctuations.

For the modeling of the temperature and concrete mois-
ture, different linear system models are used (P , PV and
PV A), each of which takes into account the different tem-
poral changes in the measurement data. For the temperature
and concrete moisture respectively, the condition in this
case is divided into the components trend (model approach:
approximate constant speed model) and periodic day/night
fluctuations (model approach: dynamic sinusoidal model).
A two-dimensional measurement transformation is used to
model the relationship between the sensor data of the multi-
ring electrode and the temperature and concrete moisture,
(temperature sensor: assumption of a linear measurement re-
lationship between temperature and measurement; multi-ring
electrode: assumption of a non-linear relationship between
temperature, concrete moisture and measurement). Figure 16
shows the raw data (changes in resistance RT and RF ).
The uppermost graphs in Figure 17 and Figure 18 show
the temperatures or concrete moisture levels determined. The
graphs below show the respective results of the model-based
state estimators for temperature or moisture trends and their
day/night fluctuations.

The depicted procedure clearly shows how by using pre-
assigned model configurations it is possible to selectively
extract beforehand supposed signal or information compo-
nents or types from the data stream as well as to determine
parameters which are not directly measurable.

If the data T or fB extracted from the model-based state
estimator were selected for further processing with a lower
data rate (e.g. every 30 mins) – as against feeding the state
estimator with sensor data (measurement interval 15 mins)
– it would be possible to achieve a data reduction without
significant loss of precision.

The method described here serves only as an example. At
the time of implementation, it will still be necessary to deter-
mine targeted parameter-related specifications for extracted
information for the various condition parameters required. In
a similar way also the interpolation of measurement data is
successful.



B. Statistical Approach – Plausibility checks on sensor data

The basic functionality of the analysis technique based on
neural networks using real sensor data with different physical
parameters is set out below.

Fig. 19. Plausibility check for a temperature sensor – noise.

Figure 19 shows an example of a plausibility check
for a temperature sensor that registers the temperature in
a solid construction (raw data, measurement at 15 min
intervals). The normal behavior of the sensor signal was
thus identified from a large volume of training data by
means of artificial neural networks. By comparing the current
temperature measurement with the learned model of this
normal behavior, an implausibility index can be calculated
that presents recognized, event-related anomalies, such as
the intermittent superimposed noise in the measurement data
here (e.g. due to corroded contact points on the sensor cables,
simulated here). Large readings that are close to a value
of one indicate low plausibility regarding the corresponding
section of measurement data.

A further example (Figure 20) involves recording the car-
riageway temperature on the old canal bridge in Berkenthin,
Schleswig-Holstein (B 208) every 20 minutes (raw data).
Outliers in the measurement data in various directions and of
an increasing nature (simulated) are accurately characterized
with the help of the plausibility index, thereby enabling a
quantitative characterisation to be made about this interfer-
ence.

Figure 21 shows a distance sensor signal sampled at 100
Hz that was superimposed by brief interference with a 50
Hz mains frequency burst signal. In the following example,
two different amplitudes were used to produce variously
strong interference, which is then presented accordingly in
the evaluation of plausibility using the algorithm (bottom
images).

Sensor drifts can in particular be identified by the fact that
the measurement data for mutually dependent parameters can
be considered jointly (e.g. force (a) and distance (b), as in
the following example of a fatigue test (Figure 22), envelope
curve display – the individual cycles are not displayed
in long-term representation). A defective sensor can, for
example, generate disproportionate readings with reference
to the second parameter to be registered or as shown

Fig. 20. Plausibility check for a temperature sensor – outliers.

Fig. 21. Plausibility check of a traffic sensor – interference 50 Hz mains
frequency.

here readings that are shifted around the zero point. The
implausibility therefore increases analogous to the zero offset
(Graph (c) below).

C. Statistical Approach – Deriving higher value information
from sensor data

With the help of machine learning algorithms, it is possible
to obtain more extensive, higher value information about
technical situations in a automated form based on sensor
data or fused data. This may refer to previously differenti-
ated measurement-technological statements (disproportionate
increase in measurement data series, conspicuous overshoots
in the signal of accelerometers etc.) or to structure-related
statements (the moisture or crack width determined in the
component increases unusually quickly). These statements
can help to safeguard the function of the acquisition equip-
ment (evidence of quality, i.e. regarding the functionality of
the measurement chain, i.e. sensors, measuring amplifiers,
transducers, analogue/digital conversion, data transmission,
power supply etc.), as well as providing additional informa-
tion through the automatic detection of potential situational
changes to the structure or its components.

Figure 23 shows a preliminary study on event detection
(carriageway temperature on the Berkenthin canal bridge,
measurement at 20 min. intervals). Significant signal forms
of the sensor data which may have a physical/chemical
relation on the structure during the fault-free operation of the
registration equipment can, among other things, be detected



Fig. 22. Plausibility check of force and distance sensors – sensor drift.

Fig. 23. Event detection of temperature sensor (significant signal forms).

by means of artificial neural networks (event detection, here
using a system with 32 output neurons). Despite the study no
longer providing a classifier to arrange the neuron responses,
the visualized responses of the neurons for the corresponding
signal forms (see red or green boxes) visually demonstrate a
very great correspondence of neuron responses (bottom part
of image). On the basis of current knowledge, it is possible
to assume that with further refinement of the process steps,
it will be possible to achieve a sharp and proper operational
detection of events in the future.

Traffic load data, captured by indirect load identification
on the bridge, (strain gauges, sampling rate 600 Hz) are a
further example of event recognition. The pulse forms can
be clearly assigned here to the neuron responses (64 output
neurons) (Figure 24).

VI. CONCLUSION AND FUTURE WORK

During future application, the implementation of sensor
data monitoring and preliminary analysis structures directly
at the sensor level (smart sensor) should not be ruled out in

Fig. 24. Event detection of traffic load data.

the system concept. In this way, information on plausibility,
functional reliability and thus a quality assurance of data,
together with data fusion, reduction and possibly interpola-
tion, can be conducted at the measurement data acquisition
site. Against the background of the possible use of energy
harvesting concepts (also see [20]), estimates of energy
consumption must be made beforehand for the potentially
usable model-based and statistical analysis techniques. The
result of the study is that the average CPU load (especially
that of the multiplication operations on a micro controller)
and thus the energy requirements of artificial neural net-
works are around 10 times high for the tasks discussed
(operation phase) than in the model-based processes (and
even 100 times higher during the learning phase). Figure 25
therefore shows proposed examples for possible algorithmic
features of model-based techniques for different parameters
when using energy harvesting. The second half of the table
presents energy-saving solutions with a loss of performance
of analysis algorithms (see [4]).

This feasibility study shows that the selected algorithms
from the field of model-based and statistical analysis tech-
nique highly support the implementation of a concept for



Fig. 25. Model-based procedures – suggestions for algorithmic configuration of various parameters.

a high-performance sensor data monitoring and analysis
within the framework of registration and assessing relevant
information on changes in action and resistance on bridges.
This applies for the purposes of plausibility checking, fusion,
interpolation and furthermore the derivation of higher-value
information. Assessments were undertaken to identify po-
tential areas of application for algorithms. It was possible to
demonstrate their fundamental performance capability based
on testing conducted with real sensor data encompassing
various physical parameters.

Follow-up research will seek to prototypical investigate the
operational safety and practicability of this kind of system
on a real, existing concrete bridge structure which has been
equipped with the requisite instrumentation. In this context,
and in addition to any potential adjustments and refinements
to the monitoring and analysis techniques, the identification
of any additional possible measures as well as operational
resources for the functional implementation of the system
on a building structure will be a central point of focus. In
addition, the research will seek to determine the possible
intervals between the functional testing of the measurement
apparatus while it is being set up on the structure, and whilst
it is in operation.
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29.0326/2013/BASt, to be published.

[21] M. Schnellenbach-Held, Machbarkeitsstudie für ein System zur In-
formationsbereitstellung und ganzheitlichen Bewertung in Echtzeit
für Brückenbauwerke, Schlussbericht Projekt FE 15.509/2011/GRB,
Berichte der Bundesanstalt für Straßenwesen, Heft B 105, March 2014.
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und Überwachungsergebnissen, Schlussbericht Projekt FE
15.508/2011/KRB, Berichte der Bundesanstalt fr Straßenwesen,
Heft B 99, March 2014.

[24] R. Schneider, J. Fischer, Prototyp zur Ermittlung der Schadens-
und Zustandsentwicklung für Elemente des Brückenmodells, Schluss-
bericht Projekt FE 15.546/2011/LRB, to be published.


