

Monitoringsysteme zur Bewertung des Schädigungszustandes von Brückenbauwerken

Für quantifizierte Aussagen zur Tragfähigkeit und Restnutzungsdauer

Ursula Freundt / Carsten Könke / Michael Hölzer / Sebastian Böning / Albrecht Schmidt

Bergisch-Gladbach

30.11.2015

Projekt gefördert durch die Bundesanstalt für Straßenwesen

Überblick

- Motivation
- 2. Tragfähigkeit und Restnutzungsdauer
- 3. Monitoring- und Bewertungskonzept
- 4. Das Monitoringsystem an einem fiktiven Beispiel
- 5. Das Monitoringsystem und die Nachrechnungsrichtlinie

Motivation

Monitoringsystem zur Bewertung von Tragfähigkeit und Restnutzungsdauer bestehender Brücken.

Ziel: Bewertung durch quantifizierte aber unscharfe Aussagen

Bilder: Straßen NRW

Tragfähigkeit und Restnutzungsdauer

Tragfähigkeit

- die Fähigkeit eines Bauteiles oder Bauwerkes, dem Versagen zu widerstehen
- Als Maß wird der Sicherheitsindex β verwendet.

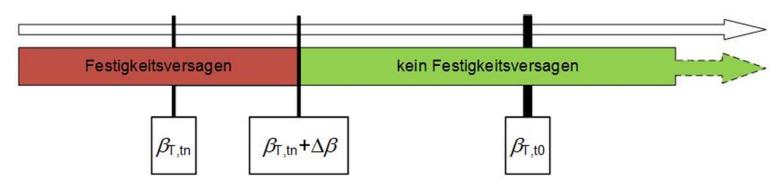
Restnutzungsdauer

- Ist die Zeitdauer, die sich unter den Annahmen für die Berechnung als Zeit ohne Ermüdungsversagen ergibt.
- Als Maß wird die Schädigungssumme D verwendet.

Modell des idealen initialen Systems (System ungeschädigt)

1 Zuverlässigkeitsindex mit den stochastischen Beschreibungen der Rand- und Lastbedingungen zum Zeitpunkt t₀ der Konstruktion des Bauwerks;

Theoretischer Zuverlässigkeitsindex des Tragwerks zum Erstellungszeitpunkt

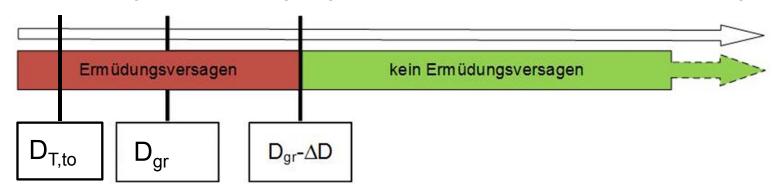

Monitoring

	Montoring		
2	Modell des identifizierten Systems (Berücksichtigung des aktuellen, geschädigten Systemzustands aus Messungen) zum aktuellen Zeitpunkt t ₁		
	Zuverlässigkeitsindex des Systems nach Identifikation der Systemparameter aus Messungen und monitoringbasierten stochastischen Beschreibungen der Rand- und Lastbedingungen		
3	Modell des Systems in den Grenzzuständen der Tragfähigkeit (Vorhersage) zum Zeitpunkt t _n		
	Ermittlung des Zuverlässigkeitsindex für zukünftige Schädigungs- und Lastsituationen bis zum Erreichen des Grenzzustands der Tragfähigkeit		
4-n	Modell des identifizierten Systems zu Zeitpunkten t _i		
	Vorhersage des Zuverlässigkeitsindex des identifizierten Systems unter Berücksichtigung eines zukünftigen Schädigungszustands und den Rand- und Lastbedingungen zum zukünftigen Zeitpunkt t_2 bis t_n		

Bewertungsstrategie – Tragfähigkeit

Verwendung des Zuverlässigkeitsindex β als Maß der Zuverlässigkeit

 $\beta_{T,t0}$ initiales Tragsystem


 $\beta_{T,tn}$ Tragsystem kurz vor dem Bruchzustand

 $\Delta \beta$ definierter Abstand zum rechnerischen $\beta_{T,tn}$

Bewertungsstrategie - Ermüdung

Verwendung der Schädigungssumme D als Maß der Bewertung

- D_{T.t0} Ertragbare Ermüdungsschädigung initiales Tragsystem
- D_{gr} Ertragbare Ermüdungsschädigung geschädigtes Tragsystem
- ΔD definierter Abstand zu D_{gr}

Tragfähigkeit und Restnutzungsdauer

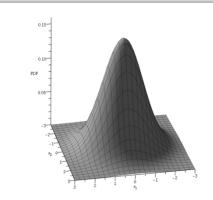
Probabilistische Ermittlung des Zuverlässigkeitsniveaus für den Grenzzustand Festigkeitsversagen mit: monitoringbasierter stochastischer Beschreibung von Einwirkungen und

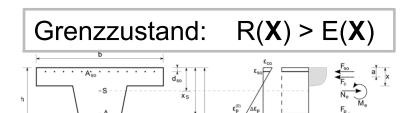
Widerständen

Betriebsfestigkeitsnachweis mit monitoringbasierter Ermittlung des Ermüdungsbeanspruchungskollektives

Probabilistisches Konzept

Tragsystem:

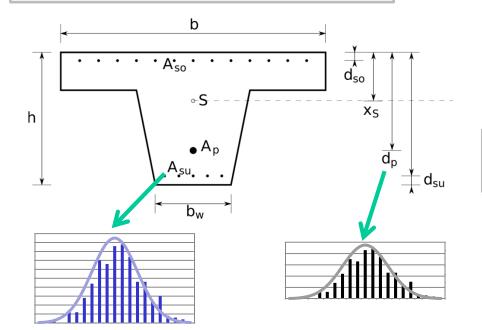

Zustandsfunktion: g(X) = R(X) - E(X)


Versagenswahrscheinlichkeit:

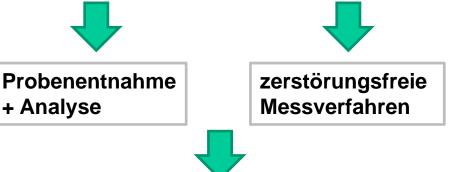
$$P_{f} = P(E(\mathbf{X}) > R(\mathbf{X})) = \int_{g(\mathbf{x}) \le 0} f_{\mathbf{X}}(\mathbf{x}) d\mathbf{x}$$

Lösungsverfahren: FORM oder SORM, ISPUD, AS, PMC, ...

Stochastische Modelle: E(X) / R(X) Widerstände


$$P_f = \Phi(-\beta)$$

Monitoringbasierte stochastische Beschreibungen von Widerständen


Welche physikalischen Größen?

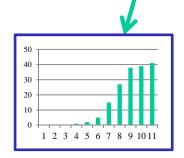
- Festigkeiten
- Elastizitätsmodul
- Geometrieabmessungen
- Lage Bewehrung

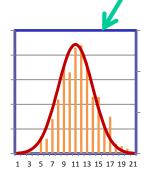
Woher stochastische Modelle, Verteilungen?

- Ableitung aus Geometrieabmessungen am Querschnitt
- Stichproben, Messungen Geometrie; Abgleich Planungsunterlagen
- Literatur

Häufigkeitsverteilungen Verteilungsfunktionen

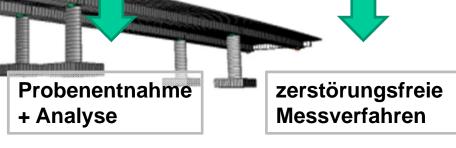
Monitoringbasierte stochastische Beschreibungen von Einwirkungen


Welche Einwirkungen?


- ständige Lasten:
 - Eigenlasten, Ausbaulaste
- Windlasten,
- Zwangsbeanspruchungen

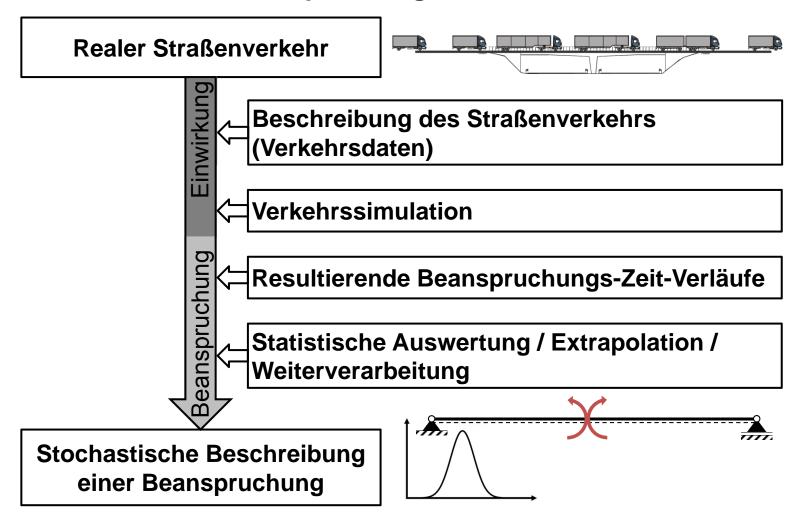
Temperatur, Setzungen, ...

- außergewöhnliche Belastungen:

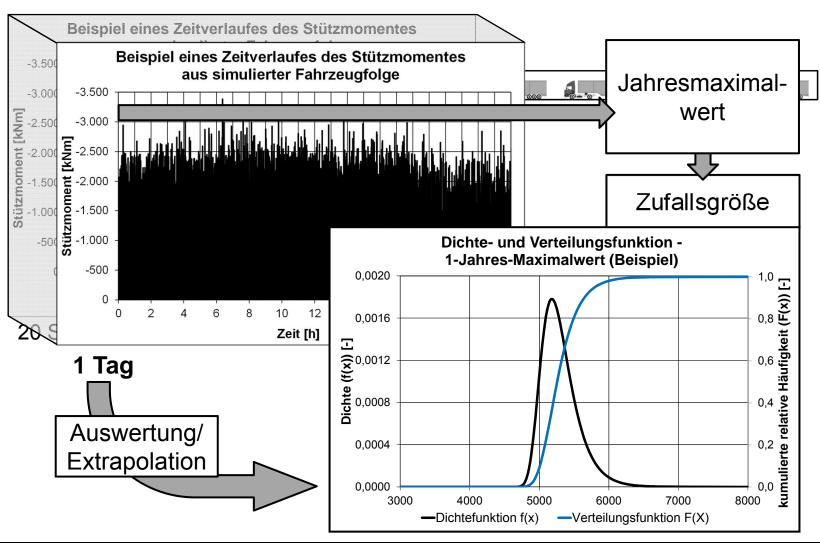

Erdbeben

Woher stochastische Modelle, Verteilungen?

- Ableitung aus Geometrieabmessungen
- Stichproben, Messungen: Dichte; Homogenität
- Literatur



Häufigkeitsverteilungen Verteilungsfunktionen



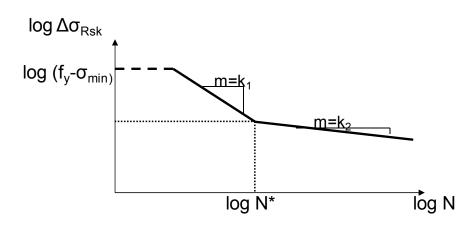
Ermittlung monitoringbasierter stochastischer Beschreibungen von Beanspruchungen aus Verkehr

Ermittlung monitoringbasierter stochastischer Beschreibungen von Beanspruchungen aus Verkehr

Ermittlung monitoringbasierter stochastischer Beschreibungen von Beanspruchungen aus Verkehr

z.B. Maximalwerte Stützmomente

Tragfähigkeit und Restnutzungsdauer


Probabilistische Ermittlung des Zuverlässigkeitsniveaus für den Grenzzustand Festigkeitsversagen mit: monitoringbasierter stochastischer Beschreibung von Einwirkungen und Widerständen

Betriebsfestigkeitsnachweis mit monitoringbasierter Ermittlung des Ermüdungsbeanspruchungskollektives

Schädigung infolge Materialermüdung / Ermüdung

Wöhlerlinien – normenkonform Beispiel Betonstahl

Anzahl Schwingspiele mit konst. Amplitude $\Delta \sigma_i$ bis zum Bruch N_{1i}

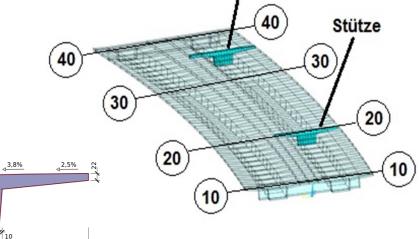
$$N_{1,i} = N^* \cdot \left(\frac{\Delta \sigma_i}{\Delta \sigma_{Rsk}(N^*)} \cdot \gamma_{S,fat} \right)^{-k_i}$$

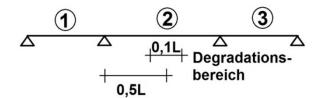
Tog N Schädigung durch einzelnes Schwingspiel mit Amplitude $\Delta \sigma_i$

$$d_{1,i} = \frac{1}{N_{1,i}}$$

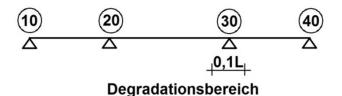
Lineare Schädigungsakkumulation – Palmgren - Miner

$$D = \sum n_i \cdot d_{1,i} = \sum_{i=1}^n \frac{n_i}{N_{1,i}}$$
 Extrapolation


$$D_{T,ti} = 100 \cdot D_{i,year}$$

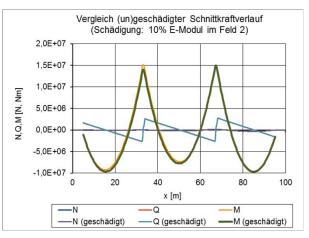

Feld

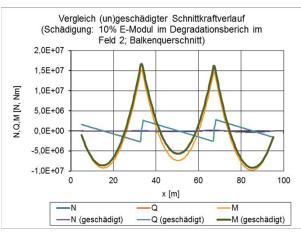
Modellierung von Tragsystemschädigungen

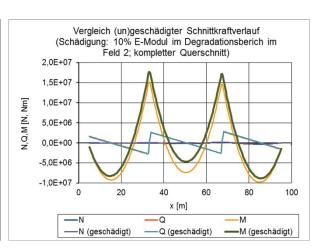

Tragsystemmodell Schnittgrößen am betrachtetem Querschnitt *Plattenbalken West*: - Feld 3 (max. Feldmoment) - Stütze (Achse 20)

Schädigung Feldbereich

Schädigung Stützbereich

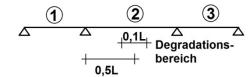



Schädigung der lokalen Tragsystemsteifigkeit; Reduktion Elastizitätsmodul



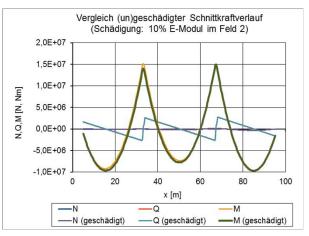
Schnittgrößenverlauf – ungeschädigtes vs. geschädigtes Tragsystem

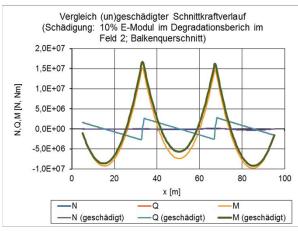
Geschädigtes Tragsystem – Feld 2 Mitte

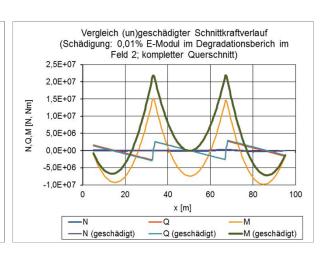


10% E₀ gesamtes Feld 2; globale Degradation

10% E₀ Feld 2 (Mitte; Zugbereich Balken); lokale Degradation

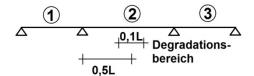

10% E₀ Feld 2 (Mitte, gesamter Querschnitt) lokale Degradation





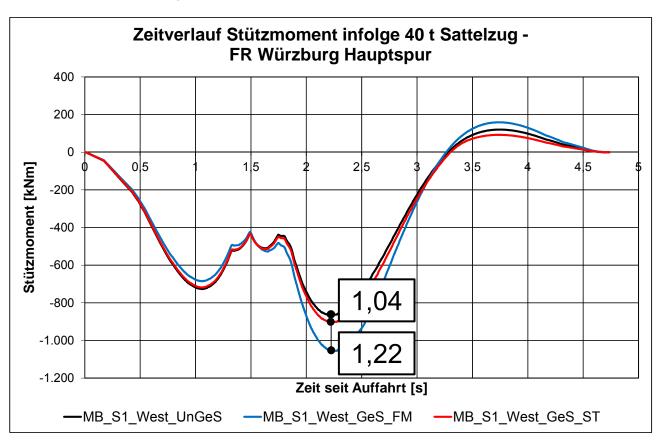
Schnittgrößenverlauf – ungeschädigtes vs. geschädigtes Tragsystem

Geschädigtes Tragsystem – Feld 2 Mitte



10% E₀ gesamtes Feld 2; globale Degradation

10% E₀ Feld 2 (Mitte; Zugbereich Balken); lokale Degradation



0,01% E₀ Feld 2 (Mitte, gesamter Querschnitt) lokale Degradation bis quasi plastisches Gelenk

Auswirkungen der Schädigungen am Tragsystem auf Beanspruchungen aus Verkehr

 Auswirkungen von Schädigungen auf Beanspruchungsverlauf infolge Einzelfahrzeug

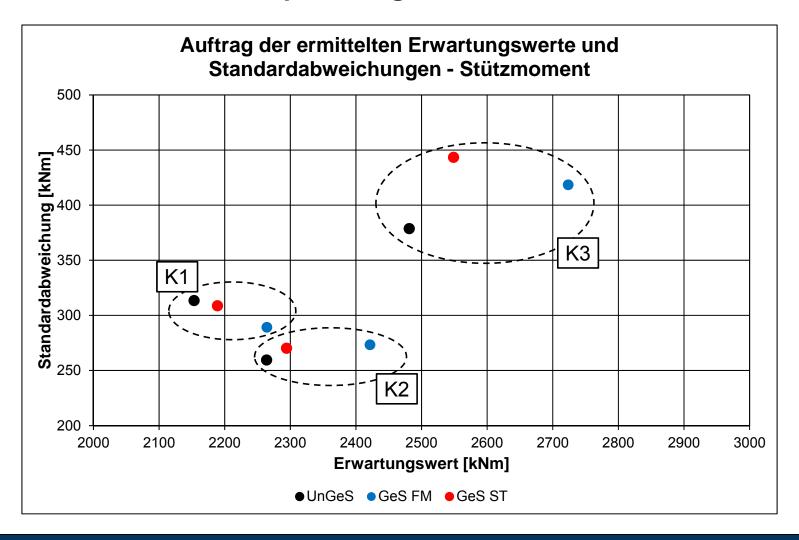
ungeschädigtes System (**Abk. UnGeS**)

Schädigung im Stützbereich (10 % E-Modul;

Abk. GeS ST)

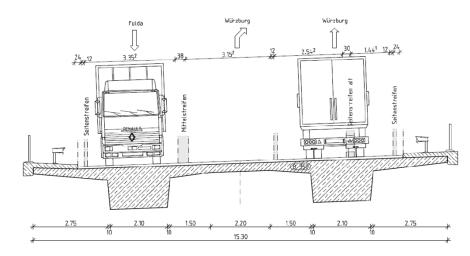
Schädigung im Feldbereich (10 % E-Modul;

Abk. GeS FM)

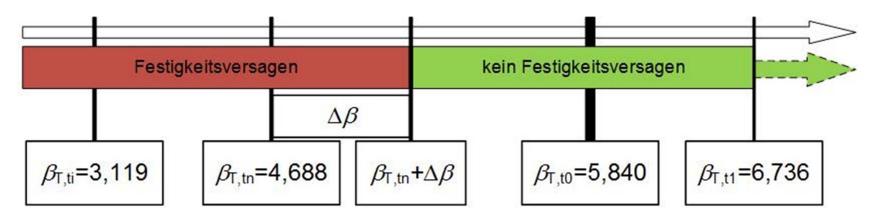


Auswirkungen der Schädigungen am Tragsystem auf Beanspruchungen aus Verkehr

- Stochastische Beschreibung der Beanspruchungen aus Verkehr auf Grundlage von Simulationsrechnungen mit definierten Verkehrsdaten
 - Beispieldaten: Brücke Fulda
 - Verkehrsvarianten:
 - Aktueller Verkehr (Datenerhebung) K1
 - Prognostizierter Verkehr in 25 Jahren (Zuwachs DTV-SV)
 - Prognostizierter Verkehr in 50 Jahren (Zuwachs DTV-SV)
 - Prognostizierter Verkehr in 50 Jahren (Zuwachs DTV-SV + K3 Änderung Verkehrszusammensetzung)
 - Weitere Variationen in Spurbelegung, Stauabbildung


Auswirkungen der Schädigungen am Tragsystem auf Beanspruchungen aus Verkehr

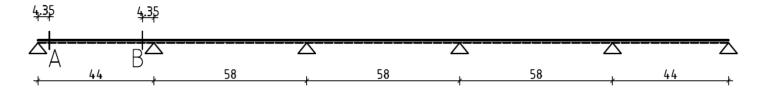
Einsatz am fiktiven Beispiel: Brücke über den Kreisel Bronnzell / Fulda


Schädigungsszenarien:

- Biegetragfähigkeit im Feldbereich
- Querkrafttragfähigkeit Lagerbereich
- Tragfähigkeit der Stützen
- Globale Abnahme der Steifigkeit des Überbaus

Quelle Bilder: BAST-Forschungsprojekt FE 88.0106/2010; Abschlussbericht

Bewertung der Tragfähigkeit


- $\beta_{T,t0}$ initiales Tragsystem Modell 1
- $\beta_{T,t1}$ identifiziertes Tragsystem Modell 2
- $\beta_{T,tn}$ Tragsystem kurz vor dem Biegeversagen Modell 4
- $\beta_{T,ti}$ Tragsystem kurz vor dem Biegeversagen Modell 3
- $\Delta \beta$ definierter Abstand zum rechnerischen $\beta_{T,tn}$

Beispiel: Ermittlung der Restnutzungsdauer infolge Materialermüdung

Beispiel: Talbrücke Lützelbach

5 - feldriger durchlaufender Überbau mit Hohlkastenquerschnitt mit Stützweiten von 44-58-58-58-44 m

Beispielnachweis:

Ermüdung Querkraftbewehrung am Endauflager (Schnitt A)

Schädigungssummen zum Zeitpunkt to und ti

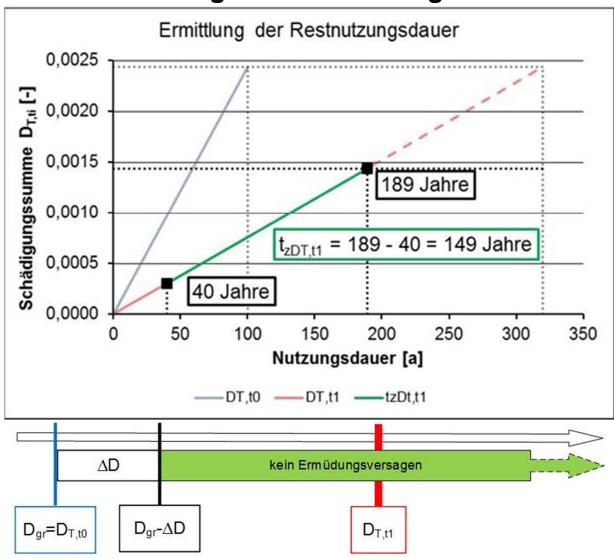
Schädigungssumme je Jahr – initiales System, Ermüdungslastmodell 4

		Zeitpunkt t ₀ - Entwurfsstadium			
	Gesamtzahl n _i [-]	$\Delta\sigma$ [N/mm²]	N ₁	$D_{LM4,i}$	
ELM 4-1	2,20 · 10 ⁵	24,04	1,63 · 10 ¹³	1,35 · 10 ⁻⁸	
ELM 4-2	1,10 · 10 ⁵	37,06	3,32 · 10 ¹¹	3,31 · 10 ⁻⁷	
ELM 4-3	2,20 · 10 ⁵	53,03	1,32 · 10 ¹⁰	1,67 · 10 ⁻⁵	
ELM 4-4	3,30 · 10 ⁵	41,39	1,23 · 10 ¹¹	2,69 · 10 ⁻⁶	
ELM 4-5	2,20 · 10 ⁵	46,02	4,72 · 10 ¹⁰	4,66 · 10 ⁻⁶	
Summe	1,10 · 10 ⁶		Summe	2,44 · 10 ⁻⁵	

Schädigungssumme je Jahr – aktueller Verkehr

Realisation	1	2	3	4	5
Schädigung D ₅	1,467 · 10 ⁻⁷	1,591 · 10 ⁻⁷	1,516 · 10 ⁻⁷	1,487 · 10 ⁻⁷	1,568 · 10 ⁻⁷

 $1.526 \cdot 10^{-7}$ Gemittelte Schädigungssumme aus den 5 Realisationen (je 5 Tage Dauer) Schädigungssumme je Jahr $7,628 \cdot 10^{-6}$


Gesamtschädigung im Nutzungszeitraum 100 Jahre:

$$D_{T,t0} = 2,44*10^{-3}$$

$$D_{T,t0} = 2,44*10^{-3}$$

 $D_{T,ti} = 7,63*10^{-4}$

Bewertung der Restnutzungsdauer

Das Monitoringkonzept und die Nachrechnungsrichtlinie

Beurteilung Tragfähigkeit und Restnutzungsdauer bei uneingeschränktem Zuverlässigkeitsniveau

Monitoringkonzept

Nachrechnungsrichtlinie

Probabilistische Ermittlung des Grenzzustandes mit:

Monitoringbasierter

E und R unscharf, Ei Ergebnis unscharf

und Widerstand

- Ergebnis β , P_f , Teilsicherheitsfaktoren

Semiprobabilistische Ermittlung des Grenzzustandes mit:

E und R scharf aber auf unscharfen Annahmen, Ergebnis scharf

 Ergebnis: Nachweis erfüllt oder nicht erfüllt